How Quantum Mechanics Derives from a Revolutionary New Theory of In...

Quantum mechanics is notoriously hard to imagine.

Today, that changes thanks to the work of Lluís Masanes at the University of Bristol in the UK and a few buddies who for the first time derive quantum mechanics from ideas that have a clear basis in reality. Their derivation is based on the revolutionary idea that information and computation form the bedrock of reality.

The problem with information as a fundamental unit is that physicists have never been sure how to think about information. That’s partly because we are surrounded by seemingly different types of information. There are the 0s and 1s of digital code, information in the form of entropy or as the opposite of randomness, genetic information and even the stuff we use for thought and communication.

The question is how are these different types of information related? Masane and co solve the conundrum by saying they are identical. There aren’t any different types of information, only gbits. [emphasis mine]

 

Though information appears to take different forms, it's really one thing, just as heat, electricity and chemical energy are different forms of energy.

In the new work, Masanes and co put forward four postulates about the Universe. If we accept these, they say, quantum mechanics naturally follows. What’s more, their formulation solves an important question about reality—why the universe relies on quantum mechanics and not one of the numerous similar theories that physicists have recently discovered.

So what are these four postulates?

1. The existence of an information unit.
This is the big new idea. It states that information exists, it comes in fundamental units and only in one type so there cannot be different types of information. Masanes and co call this fundamental unit a ‘general bit’ or gbit and say that any aspect of the Universe can be encoded given a sufficient number of them.

This idea has significant implications. If there is only one type of information, then everything in the universe must be possible with it. Or as Masanes and co put it: “Any physical process can be simulated with a suitably programmed general purpose simulator.”

Another way to think about this is that reality is substrate-independent. It’s always possible to reproduce one aspect of the universe perfectly using some other part.

2. No simultaneous encoding
This states that if a gbit is used to perfectly encode one classical bit, it cannot simultaneously encode any more information.

3. Continuous reversibility
This is the idea that a pure state can always be made to evolve into another pure state in a continuous, reversible way.

4. Tomographic locality
When a state is made of many components, it can be completely characterised by measured correlations between the individual component parts.

 

Masane and co go on to show that combining the mathematical formulations of these ideas leads directly to quantum mechanics. Indeed, they show that the only theory that obeys them all is quantum mechanics.

It gives physicists a set of physically realistic and acceptable ideas on which the theory is based. Chief among these is the idea that information and computation somehow form the bedrock of reality, an idea that has been knocking around in physics for some time now without anybody nailing it.


Interestingly, Masanes and co do not tackle the thorny issue of whether information is conserved (or the symmetry that might lead to this conservation law). [emphasis mine]

Tags: Lluís Masanes, gbit, information

Views: 65

Replies to This Discussion

May I Twitter from your site?

RSS

Support Atheist Nexus

Donate Today

Donate

 

Help Nexus When You Buy From Amazon

Amazon

AJY

 

© 2014   Atheist Nexus. All rights reserved. Admin: Richard Haynes.

Badges  |  Report an Issue  |  Terms of Service