The Acid Sea

The carbon dioxide we pump into the air is seeping into the oceans and slowly acidifying them. One hundred years from now, will oysters, mussels, and coral reefs survive? 


Castello Aragonese is a tiny island that rises straight out of the Tyrrhenian Sea like a tower. Seventeen miles west of Naples, it can be reached from the somewhat larger island of Ischia via a long, narrow stone bridge. The tourists who visit Castello Aragonese come to see what life was like in the past. They climb—or better yet, take the elevator—up to a massive castle, which houses a display of medieval torture instruments. The scientists who visit the island, by contrast, come to see what life will be like in the future.

Owing to a quirk of geology, the sea around Castello Aragonese provides a window onto the oceans of 2050 and beyond. Bubbles of CO2 rise from volcanic vents on the seafloor and dissolve to form carbonic acid. Carbonic acid is relatively weak; people drink it all the time in carbonated beverages. But if enough of it forms, it makes seawater corrosive. "When you get to the extremely high CO2, almost nothing can tolerate that," Jason Hall-Spencer, a marine biologist from Britain's University of Plymouth, explains. Castello Aragonese offers a natural analogue for an unnatural process: The acidification that has taken place off its shore is occurring more gradually across the world's oceans, as they absorb more and more of the carbon dioxide that's coming from tailpipes and smokestacks.

Hall-Spencer has been studying the sea around the island for the past eight years, carefully measuring the properties of the water and tracking the fish and corals and mollusks that live and, in some cases, dissolve there. On a chilly winter's day I went swimming with him and with Maria Cristina Buia, a scientist at Italy's Anton Dohrn Zoological Station, to see the effects of acidification up close. We anchored our boat about 50 yards from the southern shore of Castello Aragonese. Even before we got into the water, some impacts were evident. Clumps of barnacles formed a whitish band at the base of the island's wave-battered cliffs. "Barnacles are really tough," Hall-Spencer observed. In the areas where the water was most acidified, though, they were missing.

Read the rest on National Geographic.

Tags: anthropogenic climate change, carbon, coral reefs, industrialization, ocean acidification, oceans, pollution

Views: 8

Replies to This Discussion

Thanks for the pics at this link. I'd read the article elsewhere, but not seen the illustrations.

It was a good article from what I recall, though its been a while since I've read it.

RSS

Support Atheist Nexus

Donate Today

Donate

 

Help Nexus When You Buy From Amazon

Amazon

AJY

 

© 2014   Atheist Nexus. All rights reserved. Admin: Richard Haynes.

Badges  |  Report an Issue  |  Terms of Service